Learning objectives

* To gain understanding of and clarity on what quality is
* To be able to describe the different types of inspection
* To be able to describe the different statistical methods of controlling quality
* To be able to apply statistical methods in quality control activities

Manufacturing-based perspective of Quality

- Quality in terms of conformance to specification
- based on the fact that a product must come from some process of bringing it to life
- Quality definitions
 - “conformance to specifications” Joseph Juran
 - “uniformity around a target” Kauru Ishikawa

Designing for quality

- Application of scientific approach to tolerance design
- Uses the concept of Taguchi Loss Function (advanced by Genichi Taguchi)
 - Taguchi considers quality in terms of loss to society from the time a product is shipped. The smaller the loss the more desirable a product is.
 - Any variation about a target value for a parameter causes loss to the customer which increases exponentially as the parameter value moves away from the target
 - \(L(y) = k(Y-T)^2 \) where \(Y \) is actual value, \(T \) is target value, and \(k \) is some constant

INSPECTION

- Elements of production (4Ms and 1 I)
 - Information in the form of work instruction
 - Materials in the form of parts and materials
 - Machinery to set up the Materials
 - Manpower to make things
 - Methods of making things as established
- A defect occurs if one or more of the elements is or are not correct.

INSPECTION - definition

- The act of examining, studying or checking if all the elements of production (i.e. the 4Ms and 1I) are or have been right.
Inspection methods

- Judgment inspection
 - Defectives products separated from good ones
 - Based on comparison with a standard
 - Emphasizes detection of defect (not reduction or elimination)
 - Based on philosophy that defect is inevitable and cannot be avoided, but can be prevented from reaching the customer
 - Errors by workers expected.

- Informative inspection
 - Investigates the causes of defects and feeds back the information to the appropriate processes
 - Cause of defect within one of the 5 elements is reduced or eliminated by directing attention to the errors that caused it
 - Types:
 - Self-checks
 - Successive inspection after the action by the worker
 - Source inspection
 - 100% inspection
 - Identifies factors that may cause errors

Defect handling objectives and strategies

- Defects not to leave the organization/plant
 - Strategy is to have more inspectors
 - Judgmental inspection method
 - Errors are made, defects separated by inspectors
 - Defective products reworked or scraped

- Decrease defects from production process
 - Strategy is to improve production process
 - Informative inspection method
 - Information on defects fed back to the process for improvement
 - Defective products reworked or scraped

Defect handling objectives and strategies (contd)

- Zero defects leave the production process
 - Strategy is to train production workers
 - Self-check technique of informative inspection
 - Within process feedback of error information cuts feedback time

- Right first time – no defects at any rate
 - Zero defects production methods strategy
 - Source inspection method
 - Errors eliminated before they cause defects.
 - Mistake-proofing

Poka-Yoke (Mistake proofing)

- Refined by Shingo at Toyota
- Involves 100% source inspection
- Uses simple devices and procedures called poka-yoke
 - Photo sensors
 - Trip switches
 - Fixtures to orient parts
 - Checklists
 - Kitting of parts

Examples

- Labeling Template
- Jig for Part Placement
- Guide Pins and Cutouts (that limit orientation)
- Correctly Oriented
- Incorrectly Oriented

© Owino Agaya Okwiri. 2010
Examples (cont.)

- Limit Switches on Jig
- Proximity Sensor Detects Broken Bit

STATISTICAL METHODS OF QUALITY CONTROL

- Acceptance sampling
- Statistical process control

Acceptance Sampling

- Definitions
 - A form of inspection that is used to determine whether or not goods are coherent with a set standard of quality
 - A process that helps to determine whether to accept or reject the sample being observed

Risks of Acceptance Sampling

- Producers Risk
 - The risk associated with a producer rejecting a lot of materials that actually have good quality
 - Also referred to as a Type I Error
- Consumers Risk
 - The risk associated with a consumer accepting a lot of materials that actually have poor quality
 - Also referred to as a Type II Error

Application of Acceptance Sampling

- The decision to accept or reject the shipment is based on the following set standards:
 - Lot size = N
 - Sample size = n
 - Acceptance number = c
 - Defective items = d
 - If d <= c, accept lot
 - If d > c, reject lot
 - Quality standard can be specified in terms of Acceptance Quality Level (AQL) and Limiting Quality Level (LQL)
 - Sampling scheme specified in N,c

Acceptance Sampling Plan

- Mohamed owns and operates a manufacturing plant.
- He receives a shipment of 1,000 sheets of glass.
- Of the shipment, Mohamed chooses to sample 50 sheets.
- If more than 2 are defective, he is sending back the entire shipment to the supplier.
- Mohamed observes 5 defective sheets of glass
Acceptance Sampling Plan (contd)

Therefore, according to the set standards mentioned above:
- \(N = 1,000 \)
- \(n = 50 \)
- \(c = 2 \)
- \(d = 5 \)

Acceptance Sampling Plan

- What should Mohamed do in reference to the number of defective items observed?
 - Remember, if \(d > c \), reject lot
 - Since \(c = 2 \), and \(d = 5 \)…
 - Mohamed should reject the lot of 1,000 sheets of glass

Statistical Process Control

- There are two types of variations in any process output
 - Stable variation
 - Identified by the constant nature and randomness around a steady average
 - Variation is due to chance
 - Also known as “common cause variation”
 - This is the concept of “statistical control”
 - Unstable variation
 - A changing average, a series with inconsistent variation magnitude or some other systematic pattern
 - Prediction of expected extent of variation is not possible
 - An indication of a process “out of statistical control”

Control charts

- Identifies the nature of variation present:
 - If variation is stable variation only
 - Managers must redesign the process if it fails to meet requirement.
 - If unstable variation is present
 - The process is out of control and cannot be guaranteed to produce output that meets requirement
 - Make adjustment now to continue to expect an output that meets requirement
 - Be careful
 - The process may require adjustment

Quality standards

- Quality standards can be:
 - Sector specific standards
 - QS9000 standard
 - For automotive industry
 - Used by Ford, Chrysler, and General Motors only
 - TE9000 standard
 - Automotive tooling industry
 - MS9000 standard
 - Automotive tooling industry
 - AS9000 standard
 - Aerospace basic requirements
 - AS9100 standard
 - Aerospace model for quality assurance
Quality standards (contd)

- Sector specific standards
 - PS 9000 standard
 - Pharmaceuticals packaging
 - EN4600 standard
 - Medical devices quality assurance
 - ISO/TS 16949 standard
 - International automotive industry standard
 - SA8000 standard
 - Standard for social accountability

Quality standards

- General (ISO 9000)
 - ISO 9000:2005
 - A vocabulary standard
 - ISO 9001:2008
 - Specifies minimum requirements for meeting customer satisfaction
 - Specifies systems to meet regulatory requirements
 - Can be used for third party certification
 - ISO 9004:2000
 - Guideline standard for achieving continuous improvement and meeting requirements of all interested parties.

- Company-specific
 - Acceptance Quality Levels (AQL)
 - Based on acceptance sampling method
 - Zero defects,
 - Six Sigma

Reference Textbooks