Software Effort/Cost Estimation

Lecture 7
Size and Cost Estimation
Overview

- Different level of estimation
- Project Evaluation
- Introduction to Estimation
- Size Estimation
- Cost Estimation
Different level of estimation

- Before decision to do a project
 - The estimation is coarse
 - The estimation is in high level terms
 - Profit? Good to the organization? etc.

- After decision to go ahead
 - More detailed size and cost estimations are required
Project Evaluation

- A high level assessment of the project to see whether it is worthwhile to proceed with the project
- to see whether the project will fit in the strategic planning of the whole organization
Project Evaluation - Why

- Want to decide whether a project can proceed before it is too late
- Want to decide which of the several alternative projects has a better success rate, a higher turnover, a higher ...
- Is it desirable to carry out the development and operation of the software system?
Project Evaluation - Who

- Senior management
- Project manager/coordinator
- Team leader
Project Evaluation - When

- Usually at the beginning of the project
 - e.g. Step 0 of Step Wise Framework
Project Evaluation - What

- Strategic assessment
- Technical assessment
- Economic assessment
Project Evaluation - How

- Cost-benefit analysis
- Cash flow forecasting
- Cost-benefit evaluation techniques
- Risk analysis
Strategic Assessment

- Used to assess whether a project fits in the *long-term goal* of the organization
- Usually carried out by senior management
- Needs a strategic plan that clearly defines the objectives of the organization
- Evaluates individual projects against the strategic plan or the overall business objectives
Strategic Assessment (cont’d)

- Programme management
 - suitable for projects developed for use in the organization

- Portfolio management
 - suitable for project developed for other companies by software houses
SA – Programme Management

- Individual projects as components of a programme within the organization

 Programme as “a group of projects that are managed in a coordinated way to gain benefits that would not be possible were the projects to be managed independently”

 by D.C. Ferns

 Journal of Project Management

 Aug. 1991
SA – Programme Management

Issues

- Objectives
 - How does the project contribute to the *long-term goal* of the organization?
 - Will the product increase the market share? By how much?
SA – Programme Management Issues (cont’d)

- IS plan
 - Does the product fit into the overall IS plan?
 - How does the product relate to other existing systems?
Organization structure

How does the product affect the existing organizational structure? the existing workflow? the overall business model?
SA – Programme Management Issues (cont’d)

- MIS
 - What information does the product provide?
 - To whom is the information provided?
 - How does the product relate to other existing MISs?
SA – Programme Management

Issues (cont’d)

- Personnel
 - What are the staff implications?
 - What are the impacts on the overall policy on staff development?

- Image
 - How does the product affect the image of the organization?
SA – Portfolio Management

- suitable for product developed by a software company for an organization
- may need to assess the product for the client organization
 - Programme management issues apply
- need to carry out strategic assessment for the providing software company
SA – Portfolio Management

Issues

- *Long-term goal* of the software company
- The effects of the project on the portfolio of the company (synergies and conflicts)
- Any added-value to the overall portfolio of the company
Technical Assessment

- Functionality against hardware and software
- The strategic IS plan of the organization
- any constraints imposed by the IS plan
Economic Assessment

Why?

- Consider whether the project is the best among other options
- Prioritise the projects so that the resources can be allocated effectively if several projects are underway
Economic Assessment (cont’d)

How?

- Cost-benefit analysis
- Cash flow forecasting
- Various cost-benefit evaluation techniques
 - NPV and IRR
EA – Cost-benefit Analysis

- A standard way to assess the economic benefits

- Two steps
 - Identify and estimate all the costs and benefits of carrying out the project
 - Express the costs and benefits in a common unit for easy comparison (e.g. $)
EA – Cost-benefit Analysis (cont’d)

- Costs
 - Development costs
 - Setup costs
 - Operational costs
EA – Cost-benefit Analysis (cont’d)

- Benefits
 - Direct benefits
 - Assessable indirect benefits
 - Intangible benefits
EA – Cash Flow Forecasting

- **What?**
 - Estimation of the cash flow over time

- **Why?**
 - An excess of estimated benefits over the estimated costs is not sufficient
 - Need detailed estimation of benefits and costs versus time
EA – Cash Flow Forecasting (Cont’d)
EA – Cash Flow Forecasting (Cont’d)

- Need to forecast the expenditure and the income
- Accurate forecast is not easy
- Need to revise the forecast from time to time
Cost-benefit Evaluation Techniques

1. Net profit = Total income – Total costs
2. Payback period = Time taken to break even
3. Net Present Value (NPV)
4. Return on Investment (ROI)/Average Rate of Return (ARR)

\[
ARR = \frac{\text{average annual profit}}{\text{Net investment in project}} \times 100
\]
Cost-benefit Evaluation Techniques Example

<table>
<thead>
<tr>
<th>Year</th>
<th>Project 1</th>
<th>Project 2</th>
<th>Project 3</th>
<th>Project 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>-100,000</td>
<td>-1,000,000</td>
<td>-100,000</td>
<td>-120,000</td>
</tr>
<tr>
<td>1</td>
<td>10,000</td>
<td>200,000</td>
<td>30,000</td>
<td>30,000</td>
</tr>
<tr>
<td>2</td>
<td>10,000</td>
<td>200,000</td>
<td>30,000</td>
<td>30,000</td>
</tr>
<tr>
<td>3</td>
<td>20,000</td>
<td>200,000</td>
<td>30,000</td>
<td>30,000</td>
</tr>
<tr>
<td>4</td>
<td>20,000</td>
<td>200,000</td>
<td>20,000</td>
<td>25,000</td>
</tr>
<tr>
<td>5</td>
<td>100,000</td>
<td>350,000</td>
<td>20,000</td>
<td>50,000</td>
</tr>
</tbody>
</table>

Net Profit	60,000	150,000	30,000	45,000
Payback	5	5	4	4
ROI	12%	3%	7.5%	11%
Advantages/Disadvantages

- Net profit
 - Advantage: simple to use
 - Disadvantage: ignores the timing of the cash flow

Payback period
- Advantage: simple to calculate, not particular sensitive to small forecasting errors
- Disadvantage: ignores any income (or expenditure) after the payback period
Advantages/Disadvantages

- Return on Investment (ROI)
 Advantage: simple and easy to calculate, quite popular
 Disadvantages:
 1. ignores the timing of the cash flow
 2. Potentially very misleading because it is very tempting to compare the rate of return with the current interest rates
Cost-benefit Evaluation Techniques – Net Present Value

Net present value (NPV)

- It is the present value of the net cash inflows less projects initial investment outlay.

- *Present value* is the value which a future amount is worth at present

- It takes into account the profitability of a project and the timing of the cash flows

- Recognises that the shilling earned today is worth more than the same shilling earned a year later.
NPV procedure

1. Determine the appropriate rate of return that should be selected as the minimum required rate of return also called discount rate
2. Compute the present value of total investment outlays (cash outflows) at the discounted rates
3. Compute the present value of total investment proceeds i.e. cash inflows (profit b4 depreciation and after tax)
4. Subtract the present value of cash inflows from the present value of cash outflows
5. If PV is +VE or 0 i.e. >= PV cash outflows, then the proposal may be accepted
6. Rank the PVs of projects in order of NPV from highest +ve to – ve
Let n be the number of years and r be the discount rate, the present value (PV) is given by

$$PV = \frac{\text{value in years } n}{(1 + r)^n}$$
NPV = -P + I_{0+} \left(\frac{I_1}{(1+r)} + \frac{I_2}{(1+r)^2} + \ldots + \frac{I_n}{(1+r)^n} \right)

or

NPV = -P + \frac{I}{r}

where:

P: = \text{capital cost, accruing in full at the beginning of the project}

I_{1,2,...n}: = \text{net cash flows arising from the project in years 1 to } n

r: = \text{the opportunity cost of capital}
Example

- A firm has an opportunity of investing Kshs 1000 in a project with a life of 3 years. The estimated cash flows are as follows;
 - Year 1 – Kshs 300
 - Year 2 – Kshs 1000
 - Year 3 – Kshs 400

The opportunity cost of capital is 10%. Calculate NPV of the project cash flows
Advantages/Disadvantages

- **NPV**
 - Advantage: takes into account the profitability of a project and the timing of the cash flows that are produced.
 - Disadvantage:
 - 1. hard to select an appropriate discount rate
 - 2. NPV might not be directly comparable with earnings from other investments or the costs of borrowing capital.
Cost-benefit Evaluation Techniques – NPV (cont’d)

- *Discount rate* is the annual rate by which we discount future earning.
 - e.g. If discount rate is 10% and the return of an investment in a year is $110, the present value of the investment is $100. (i.e $110/(1.10)^1$)
Cost-benefit Evaluation Techniques – NPV (cont’d)

- Issues with NPV
 - Choosing an appropriate discount rate is difficult
 - Ensuring that the rankings of projects are not sensitive to small changes in discount rate
Cost-benefit Evaluation Techniques – NPV (cont’d)

Guidelines:
- Use the standard rate prescribed by the organization
- Use interest rate + premium rate
- Use a target rate of return
- Rank the projects using various discount rates
Cost-benefit Evaluation Techniques – IRR

- Internal Rate of Return (IRR)
 - The percentage discount rate that would produce an NPV of zero
 - Internal rate of return (IRR) is the rate of return that will equate the present value of a multi-year cash flow with the cost of investing in a project.
 - IRR is a break-even discount rate
 - Using the NPV equation: the IRR is the discount rate that renders the NPV of the project equal to zero.
P, n and the expected future cash returns (I) are known, we try to find IRR.

If the IRR is greater than the market rate of interest r, it implies that the present value of the capital good (PV) is greater than its purchase price (P) and the firm should invest. Conversely, if IRR is smaller than r, it implies that PV is smaller than P and the firm should not invest.

What are the differences between NPV technique and IRR method?
In most situations, the IRR method will yield the same results as the NPV method. But:

- there may be more than one value for the IRR that satisfies the NPV equation; if the sign of cash flows changes more than once in the life of the project, there may be multiple solutions

- the NPV rule uses actual opportunity cost of capital as the discount rate; the IRR rule assumes the shareholders can invest at the IRR

- IRR is expressed in terms of a percentage rate of return, it ignores the project’s absolute effect on the wealth of shareholders
Cost-benefit Evaluation Techniques – IRR (cont’d)

Net Present Value($)

Discount rate (%)

<table>
<thead>
<tr>
<th>Discount rate (%)</th>
<th>Net Present Value($)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>9000</td>
</tr>
<tr>
<td>9</td>
<td>6000</td>
</tr>
<tr>
<td>10</td>
<td>3000</td>
</tr>
<tr>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>-3000</td>
</tr>
</tbody>
</table>
Cost-benefit Evaluation Techniques – IRR (cont’d)

- Advantages
 - Convenient
 - Directly comparable with rate of return on other projects and with interest rates
 - Useful
 - Dismiss a project due to its small IRR value
 - Indicate further precise evaluation of a project
 - Supported by MS Excel and Lotus 1-2-3
Calculate NPV of the 2 projects X & Y detailed below assuming a discount rate of 12%. Which project do you recommend to the investor?

<table>
<thead>
<tr>
<th></th>
<th>PROJECT X</th>
<th>PROJECT Y</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial investment</td>
<td>Kshs 20,000</td>
<td>30,000</td>
</tr>
<tr>
<td>Estimated life</td>
<td>5 Years</td>
<td>5 years</td>
</tr>
<tr>
<td>Scrap value</td>
<td>Kshs 1,000</td>
<td>2,000</td>
</tr>
<tr>
<td>Cash inflows</td>
<td>Y1-5000, Y2-10000, Y3-10000, Y4-3000, Y5-2000</td>
<td>Y1-20,000, Y2-10,000, Y3-5,000, Y4-3,000, Y5-2,000</td>
</tr>
</tbody>
</table>
Software Effort Estimation

- Why? – to define the project budget and to ‘refine’ the product to realize the budget
- Who? – the manager
- What? – size and cost
- When? – always
- How? – techniques and models
Issues related to Estimation

- Difficult to make accurate estimation
- Better to have previous data and analyze the actual values against their estimates so that you know how accurate you are
- Even better to have previous data of the whole organization so that you know how accurate the estimation method, if any, used within the organization is
Positive Attitude Towards Estimation

- Use your estimation as a guide to manage your project
- From time to time, you need to revise your estimation based on the current status of the project
Estimation Approaches

- Expert judgement
 - Ask the knowledgeable experts
- Estimation by analogy
 - Use the data of a similar and completed project
- Pricing to win
 - Use the price that is low enough to win the contract
Estimation Approaches (cont’d)

- Top-down
 - An overall estimate is determined and then broken down into each component task

- Bottom-up
 - The estimates of each component task are aggregated to form the overall estimate

- Algorithmic model
 - Estimation is based on the characteristics of the product and the development environment.
Size Estimation

- Problems related to size estimation
- Size Estimation Model
 - Function Point Analysis (FPA)
Problems related to size estimation

- Nature of software
- Novel application of software
- Fast changing technology
- Lack of homogeneity of project experience
- Subjective nature of estimation
- Political implications within the organization
Function Point Analysis (FPA)

- Developed by A. Albrecht in IBM
- Aim: To estimate the LOC of a system

\[
\text{LOC (Line of Code) of system} = \text{FP of system} \times \text{LOC-per-FP of the language}
\]
Function Point Analysis (cont’d)

- Idea: Software system consists of five major components (or, *external user types*)
 - External input types
 - External output types
 - Logical internal file types
 - External interface file types
 - External inquiry types
External user types

- External input types
 - Input transactions that update internal computer files
- External output types
 - Transactions that output data to user such as report printing.
- Logical internal file types
 - The standing file used by the system.
 - File: a group of data that is usually accessed together. It may have one or more record types. Example: A PurchaseOrder may contain one or more PurchaseItems.
External user types cont’

- External interface file types
 - Input and output that may pass from and to other computer applications.
 - Files shared among applications would also be counted.
 - Example: the transmission of accounting data from an order processing system to the main ledger system.
- External inquiry types
 - Transactions initiated by the user that provide information but do not update the internal files.
Function Point Analysis - Steps

- Identify each instance of each external user type in the proposed system
- Classify each instance as having high, medium or low complexity
- Assign the FP of each instance
- FP of the system = sum of FP of individual components
Function Point Analysis

<table>
<thead>
<tr>
<th>Number of FPs</th>
<th>Complexity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low</td>
</tr>
<tr>
<td>External user type</td>
<td></td>
</tr>
<tr>
<td>External input type</td>
<td>3</td>
</tr>
<tr>
<td>External output type</td>
<td>4</td>
</tr>
<tr>
<td>Logical internal file type</td>
<td>7</td>
</tr>
<tr>
<td>External interface file type</td>
<td>5</td>
</tr>
<tr>
<td>External inquiry type</td>
<td>3</td>
</tr>
</tbody>
</table>
Function Point Analysis - Example

- A component of an inventory system consisting of ‘Add a record’, ‘Delete a record’, ‘Display a record’, ‘Edit a record’, and ‘Print a record’ will have
 - 3 external input types (add, delete, and edit) - low
 - 1 external output type (print) - medium
 - 1 external inquiry type (display) - high

Then, assign FPs based on the complexity of each type
Results

- 3 external input types: add, delete, and edit (all of low complexity)
- 1 external output type: print (average complexity)
- 1 external inquiry type: display (high complexity)
- FP of system: $3 \times 3 + 1 \times 5 + 1 \times 6 = 20$
- LOC of system = $20 \times$ LOC-per-FP of the lang.
Function Point Analysis (cont’d)

- Other issues
 - The assignment of level of complexity is rather subjective
 - International FP User Group (IFPUG) imposes rules on assigning the level of complexity to individual external user types
Object Point Analysis

- Similar to function point analysis
- Used on 4GL development projects
- Takes account of features that may be more readily identifiable if the system is built on high-level application building tools
Object Point Analysis – Steps

- Identify the number of screens, reports and 3GL components
- Classify each object as Simple, Medium and Difficult
- Assign the weight accordingly
- Calculate the total object points
 \[\text{Total OP} = \text{sum of individual OP} \times \text{weighting} \]
Object Point Analysis – Steps (cont’d)

- Deduct the reused objects (r% reused)

 \[\text{NOP (New Object Point)} = \text{OP} \times (1 - r\%) \]

- Identify the Productivity Rate (PR) of both developer and CASE

- Productivity rate = average of the two PRs

- Calculate the effort

 \[\text{Effort} = \frac{\text{NOP}}{\text{Productivity Rate}} \]
Object Point Analysis – Screens

Number and source of data tables

<table>
<thead>
<tr>
<th>Number of views contained</th>
<th>Total < 4 (<2 server, <2 client)</th>
<th>Total < 8 (2-3 server, 3-5 client)</th>
<th>Total 8+ (>3 server, >5 client)</th>
</tr>
</thead>
<tbody>
<tr>
<td>< 3</td>
<td>Simple</td>
<td>Simple</td>
<td>Medium</td>
</tr>
<tr>
<td>3 – 7</td>
<td>Simple</td>
<td>Medium</td>
<td>Difficult</td>
</tr>
<tr>
<td>8+</td>
<td>Medium</td>
<td>Difficult</td>
<td>Difficult</td>
</tr>
</tbody>
</table>
Object Point Analysis – Reports

Number and source of data tables

<table>
<thead>
<tr>
<th>Number of sections contained</th>
<th>Total < 4</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(<2 server, <2 client)</td>
</tr>
<tr>
<td>< 2</td>
<td>Simple</td>
</tr>
<tr>
<td>2 or 3</td>
<td>Simple</td>
</tr>
<tr>
<td>> 3</td>
<td>Medium</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total < 8</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(2-3 server, 3-5 client)</td>
</tr>
<tr>
<td>< 2</td>
<td>Simple</td>
</tr>
<tr>
<td>2 or 3</td>
<td>Medium</td>
</tr>
<tr>
<td>> 3</td>
<td>Difficult</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Total 8+</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(>3 server, >5 client)</td>
</tr>
<tr>
<td>< 2</td>
<td>Medium</td>
</tr>
<tr>
<td>2 or 3</td>
<td>Difficult</td>
</tr>
<tr>
<td>> 3</td>
<td>Difficult</td>
</tr>
</tbody>
</table>
Object Point Analysis – Complexity Weightings

<table>
<thead>
<tr>
<th>Type of object</th>
<th>Simple</th>
<th>Medium</th>
<th>Difficult</th>
</tr>
</thead>
<tbody>
<tr>
<td>Screen</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Report</td>
<td>2</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>3GL component</td>
<td>N/A</td>
<td>N/A</td>
<td>10</td>
</tr>
</tbody>
</table>
Object Point Analysis – Productivity Rate

<table>
<thead>
<tr>
<th></th>
<th>Very low</th>
<th>Low</th>
<th>Nominal</th>
<th>High</th>
<th>Very High</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developer’s experience and capability</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>25</td>
<td>50</td>
</tr>
<tr>
<td>CASE maturity and capability</td>
<td>4</td>
<td>7</td>
<td>13</td>
<td>25</td>
<td>50</td>
</tr>
</tbody>
</table>
Object Point Analysis – Issues

- Adopted in Boehm’s COCOMO II in the application composition stage
Cost Estimation - Constructive Cost Model II (COCOMO II)

- A parametric cost model
 - Important aspects of software projects are characterized by variables (or parameters)
 - Once the value of the parameters are determined, the cost can be computed from an equation
COCOMO II (cont’d)

- Recognizes different approaches to software development
- Prototyping, Incremental development etc.
A history of COCOMO

- **COCOMO** originally proposed by Boehm in 1981, now called **COCOMO 81**
- Later evolved to **Ada COCOMO** in 1989
- In 1995, Boehm proposed **COCOMO II**
COCOMO II

- A family of models
 - Uses different models in 3 different stages of the project
- 3 stages: application composition, early design and post architecture
 - Supports estimation early in the process
 - Allows further detailed estimation after the system architecture has been defined
COCOMO II (cont’d)

- The basic model equation
 \[\text{Effort} = \text{Constant} \times (\text{Size})^{\text{scale factor}} \times \text{Effort Multiplier (EM)} \]

- Effort in terms of person-months
- Constant: 2.45 in 1998
- Size: Estimated Size in KSLOC (Kilo Source Line of Code)
- Scale Factor: combined process factors
- Effort Multiplier (EM): combined effort factors
The Application Composition Stage

- Estimation at the early stage
- Corresponding to exploratory work such as prototyping
- Uses object points to estimate the size of the product
The Early Design Stage

- Estimate after the requirements specification is completed and possibly with some design
- Use the basic model equation
- Estimate the size by FPs (preferred) or KSLOC
- Estimate scale factor and effort multiplier
The Early Design Stage – Scale Factor

- Estimation of the scale factor
 - A combined effect of 5 parameters
- Application precedentedness
- Process flexibility
- Architecture risk resolution
- Team cohesion
- Process maturity
Definitions

- **Application precedentedness**: the degree of domain experience of the development organization

- **Process flexibility**: the degree of contractual rigor, ceremony, and change freedom inherent in the project contract, life-cycle activities, and stake-holder communications

- **Architecture risk resolution**: the degree of technical feasibility demonstrated before commitment to full-scale production

- **Team cohesion**: the degree of cooperation and shared vision among stake-holders (buyers, developers, users, and maintainers, among others)

- **Process maturity**: the maturity level of the development organization, as defined by SEI’s CMM
The Early Design Stage – Scale Factor (cont’d)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Very Low (0.05)</th>
<th>Low (0.04)</th>
<th>Nominal (0.03)</th>
<th>High (0.02)</th>
<th>Very High (0.01)</th>
<th>Extra High (0.00)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Precedentedness</td>
<td>Thoroughly unprecedented</td>
<td>Largely unprecedented</td>
<td>Somewhat unprecedented</td>
<td>Generally familiar</td>
<td>Largely familiar</td>
<td>Thoroughly familiar</td>
</tr>
<tr>
<td>Development flexibility</td>
<td>Rigorous</td>
<td>Occasional relaxation</td>
<td>Some relaxation</td>
<td>General conformity</td>
<td>Some conformity</td>
<td>General goals</td>
</tr>
<tr>
<td>Architecture risk resolution</td>
<td>Little 20%</td>
<td>Some 40%</td>
<td>Often 60%</td>
<td>Generally 75%</td>
<td>Mostly 90%</td>
<td>Full 100%</td>
</tr>
<tr>
<td>Team cohesion</td>
<td>Very difficult interactions</td>
<td>Some difficult interactions</td>
<td>Basically cooperative</td>
<td>Largely cooperative</td>
<td>Highly Cooperative</td>
<td>Seamless interactions</td>
</tr>
<tr>
<td>Process maturity</td>
<td>Level 1</td>
<td>Level 2</td>
<td>Level 2+</td>
<td>Level 3</td>
<td>Level 4</td>
<td>Level 5</td>
</tr>
</tbody>
</table>
The Early Design Stage – Scale Factor (Cont’d)

- Calculate the scale factor based on the equation

 Scale factor = \(1.01 + \text{sum of the values} \)
The Early Design Stage – Effort Multiplier

- 7 factors in Effort Multiplier
 - product Reliability and ComPleXity (RCPX)
 - required reusability (RUSE)
 - Platform DIFficulty (PDIF)
 - PERSonnel capability (PERS)
 - PeRsonnel EXperience (PREX)
 - FaCILities available (FCIL)
 - SChEDule pressure (SCED)
The Early Design Stage – Effort Multiplier (cont’d)

- Assess each factor by:
 - Very low, low, nominal, high, very high, and extra high
- Assign each factor using a value between 0.5 and 1.5 (inclusive)
- EM is the product of all these values
The Early Design Stage – Effort Multiplier (cont’d)

<table>
<thead>
<tr>
<th>Early Design</th>
<th>Very Low – Extra High</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCPX</td>
<td>0.5 – 1.5</td>
</tr>
<tr>
<td>RUSE</td>
<td>0.5 – 1.5</td>
</tr>
<tr>
<td>PDIF</td>
<td>0.5 – 1.5</td>
</tr>
<tr>
<td>PERS</td>
<td>1.5 – 0.5</td>
</tr>
<tr>
<td>PREX</td>
<td>1.5 – 0.5</td>
</tr>
<tr>
<td>FCIL</td>
<td>1.5 – 0.5</td>
</tr>
<tr>
<td>SCED</td>
<td>1.5 – 0.5</td>
</tr>
</tbody>
</table>
The Post-architecture Stage

- Estimation after the software architecture has been defined
- The same basic model equation
- Size estimation by KSLOC (preferred) or FPs
- Same scale factor estimation
- 17 factors in EM (7 in early design stage)
The Post-architecture Stage – Effort Multiplier

- 17 factors in 4 different categories
 - Product attributes
 - Platform attributes
 - Personnel attributes
 - Project attributes
The Post-architecture Stage – Effort Multiplier

- Product attributes
 - Required reliability (RELY)*
 - Database size (DATA)
 - Product complexity (CPLX)*
 - Required reuse (RUSE)**
 - Documentation (DOCU)

*Relate to RCPX in early design stage
The Post-architecture Stage – EAF (Cont’d)

- Platform attributes
 - execution TIME constraint (TIME)*
 - main STORage constraint (STOR)*
 - Platform VOLatility (PVOL)*

*Related to Platform DIFFiculty (PDIF) in early design stage
The Post-architecture Stage – EAF (Cont’d)

- Personnel attributes
 - Analyst CAPabilities (ACAP)^
 - Application EXPerience (AEXP)*
 - Programmer CAPabilities (PCAP)^
 - Personnel EXPerience (PEXP)*
 - programming Language/Tool EXperience (LTEX)*
 - Personnel CONtinuity (PCON)^
The Post-architecture Stage – EAF (Cont’d)

- Project attributes
 - use of software TOOLs (TOOL)*
 - multiSITE development team communications (SITE)*

*Relate to FCIL in early design model
EAF Relations

<table>
<thead>
<tr>
<th>Early Design</th>
<th>Post-Architecture</th>
</tr>
</thead>
<tbody>
<tr>
<td>RCPX</td>
<td>RELY, DATA, CPLX, DOCU</td>
</tr>
<tr>
<td>RUSE</td>
<td>RUSE</td>
</tr>
<tr>
<td>PDIF</td>
<td>TIME, STOR, PVOL</td>
</tr>
<tr>
<td>PERS</td>
<td>ACAP, PCAP, PCON</td>
</tr>
<tr>
<td>PREX</td>
<td>AEXP, PEXP, LTEX</td>
</tr>
<tr>
<td>FCIL</td>
<td>TOOL, SITE</td>
</tr>
<tr>
<td>SCED</td>
<td>SCED</td>
</tr>
</tbody>
</table>
COCOMO II (cont’d)

- Advantages
 - Good improvement over COCOMO
 - Good match for iterative development, modern technology, and management process

- Disadvantages
 - Still immature, diverse projects in database
 - Hard to believe that it will be any more reliable than the original COCOMO model
References

- http://csse.usc.edu/csse/research/COCOMOII/cocomo_main.html